
How Hugo handles your pages (technically speaking)
 Lexer, Parser and Goldmark

https://hugoconf.io/

Duccio Marco Gasparri @dgasparri

How Hugo handles your pages (technically speaking)
 Lexer, Parser and Goldmark

Duccio Marco Gasparri

https://gasparri.org

 @dgasparri

https://github.com/dgasparri

https://hugoconf.io/

http://gasparri.org
https://github.com/dgasparri
https://hugoconf.io/

Duccio Gasparri @dgasparri

Duccio Marco Gasparri

https://gasparri.org

 @dgasparri

https://github.com/dgasparri

http://gasparri.org
https://github.com/dgasparri

Duccio Gasparri @dgasparri

Why reverse engineering Hugo?

○ I’m no Hugo expert
■ I’ve been using Hugo for a couple of months now
■ I had to understand how Hugo was processing Markdown pages (At the low level)

○ I tried the direct approach - open the source files and read the code
■ but it was too obfuscated
■ some functions are injected or chosen at run time
■ No clear distinction among different components

○ So I stepped back and did some reverse engineering

Duccio Gasparri @dgasparri

How was Hugo RE?

○ the old-fashioned way
■ fmt.Println(“We are in function xy”)

○ Stack trace dump
■ Regex to find functions in the code, and trace dump to a file for later review

Duccio Gasparri @dgasparri

How is Hugo inside?

○ Ignoring the file structure, templates, and so on (for another time)

○ I focused on what was of interest to me, specifically on the way Hugo parses and handles
Markdown files

■ Relevant for Issue #3606 on GitHub “Support wiki-style internal page links”
https://github.com/gohugoio/hugo/issues/3606

https://github.com/gohugoio/hugo/issues/3606

Duccio Gasparri @dgasparri

Three main blocks for processing .md files

Those three blocks combined transform a Markdown file into a html file

Parser

Lexer

Goldmark

Duccio Gasparri @dgasparri

Goldmark

● It is a native Markdown processor written by Yusuke Inuzuka (independent from Hugo)
○ https://github.com/yuin/goldmark

● Fully compliant with CommonMark 0.30b

It can process main md items:
● Headings #

● Italic

● Bold

● Lists

● Links

But it cannot process other items:
● Hugo templates

● Shortcodes

● Links (rewriting, since it has no
idea of the internal structure of
the website)

https://github.com/yuin/goldmark

Duccio Gasparri @dgasparri

Parser

First step of the whole process
○ Two jobs:

1. it invokes the Lexer
2. Receives the page content as “digested” from the Lexer (chunks of the original file, each chunk

containing either Front Matter, Shortcodes, Links..) and handles it

Specifically, it handles:
● Front Matter
● Summary Dividers
● Shortcodes
● Emojis

(but only if returned by the Lexer)

Plain text or standard Markdown are not processed (left to Goldmark)

Duccio Gasparri @dgasparri

Lexer

● The function of the Lexer is:
1. to find hooks in the page (for example, short code opening “{{<”)
2. to divide the page in chunks according to the content function (and send them to the

parser)

● Among others, it separates:
● Front Matter
● Shortcodes
● Emojis

Duccio Gasparri @dgasparri

Parser and Lexer - source of uncertainty

An example of something that was obscure at the beginning:

○ The Lexer finds hooks in the file content for shortcodes’ *openings*
○ The Parser finds hooks in the file content for the shortcodes’ *closings*

But…

○ The Lexer finds the hooks for the Front Matter *opening* and *closing*
○ The Parser doesn’t search for front matter in the file content, it just digests what the lexer has found

Once you know it, it’s not anymore confusing… once you know it (and they had reasons
for doing it like that)

Duccio Gasparri @dgasparri

To recap

○ The Lexer divides the page in chunks of Front Matter, shortcodes, emojis, plain Markdown
text

○ The Parser takes the list of chunks from the Lexer and processes them (but not the plain
Markdown, which is left to Goldmark)

○ Goldmark processes the remaining Markdown in the page (headings, bold, italic, etc.)

Duccio Gasparri @dgasparri

Let’s now look at the low level

Duccio Gasparri @dgasparri

Parser - low level

○ Package "github.com/gohugoio/hugo/parser/pageparser"
○ Called (for each page) by the function:

■ hugolib/content__map_page.go:
● (m *pageMap).newPageFromContentNode():149

Duccio Gasparri @dgasparri

Parser - low level (cont)

○ The Parse(...) function (parser/pageparser/pageparser.go:39) calls the parseSection() function
passing the lexIntroSection function as an argument

■ This is relevant! The Lexer is based on functions chosen at runtime according to the
content presented, this gives its entry point

○ The order is:
■ Parse()
■ parseSection()

● Read the io.Reader content
■ parseBytes

● Instantiates the Lexer and runs it
● Returns the Lexer with all the content

Duccio Gasparri @dgasparri

Parser - low level (cont)

■ … after some passages …
■ The lexer result is returned to the hugolib/page.go:mapContentForResult() function

that iterates through the pieces of the page (as divided by the Lexer) and handles each
piece accordingly to its type. Cases are:

● Case it.IsFrontMatter()
● Case it.Type == pageparser.TypeLeadSummaryDivider
● Case it.IsLeftShortcodeDelim()
● case it.Type == pageparser.TypeEmoji
● case it.IsError()
● Default (plain text to write to output file)

Duccio Gasparri @dgasparri

Lexer - low level

○ Called by: parser/pageparser.go:parseBytes() (entry point)
■ pagelexer.go:newPageLexer()
■ lexer.run()

○ pagelexer.go:newPageLexer()
■ instantiates a new pageLexer
■ initializes it with the initial “state” (i.e., a Lexer function for parsing the given content, that

at this stage is lexIntroSection())
■ creates the Section Handlers, that is, functions and codes for handling shortcodes,

page summary and emoji

Duccio Gasparri @dgasparri

Lexer - low level (cont)

○ pagelexer.go:run()
■ Runs the first lexer function lexIntroSection()
■ Receives - from the lexer function - the next lexer function and runs it

Duccio Gasparri @dgasparri

Lexer - low level (cont)

○ This setup is not trivial
○ The lexer function not only has to parse its part of the content (for example, front matter

setting) but it must also decide which lexer function should run next
○ It must:

■ be aware of the available lexer functions
■ make a decision on what to run next

○ No separation of concerns
○ Main lexer functions:

■ lexIntroSection() - Front matter
● -> lexMainSection() always

■ lexMainSection()
● -> lex section handlers
● return lexDone()

Duccio Gasparri @dgasparri

Goldmark - low level

○ It’s an independent library, so it is just imported (with its extensions) and instantiated

○ Instantiated by hugolib/hugo_sites.go:applyDeps() during config loading through:
■ helpers/content.go:NewContentSpec()
■ markup/goldmark/convert.go:(provide p struct)New()
■ markup/goldmark/convert.go:newMarkdown()

● Return goldmarkConverter struct with goldmark:Markdown interface (Convert()
function implemented)

Duccio Gasparri @dgasparri

Goldmark - low level

○ Called by hugolib/content_map_page.go/newPageFromContentNode() that calls:
○ -> hugolib/page__per_output.go:newPageContentOutput()
○ -> hugolib/page__per_output.go:renderContent()
○ -> hugolib/page__per_output.go:renderContentWithConverter()
○ -> Convert()

Duccio Gasparri @dgasparri

To sum up

● The function newPageFromContentNode() is responsible of calling:
○ the Parser->Lexer
○ and then, the Goldmark processor

● The Lexer splits the page in chunks based on the content type of what it is reading (front matter,
shortcodes, markup/text)

● The Parser takes each chunk that is not markup/text and processes it
● In the end, the content is passed to the Goldmark processor for final markup parsing

Duccio Gasparri @dgasparri

You can find my notes on Hugo’s code at

 https://gasparri.org/hugo-techical/

https://gasparri.org/hugo-techical/

